Dissociation of lower limb muscle growth in young children with unilateral cerebral palsy

SJ Obst^{1,2}, K Florance¹, R Bickell¹, F Read², R Boyd² and L Barber^{1,2,3}

¹School of Health, Medical and Applied Sciences, CQUniversity, Bundaberg, Australia ²Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia ³School of Allied Health Sciences, Griffith Health, Griffith University, Brisbane, Australia

Background

Research on muscle development in children with unilateral cerebral palsy (UCP) has focused on muscles of the more-involved limb, and those prone to spasticity and contracture^{[1][2]}. > Few studies report muscle development of agonistantagonist muscle pairs.

Results

> MG of the UCMI was smaller and had a higher mean El compared to UCLI and TD. There was no difference in TA volume or El between any groups. Compared to TD, MG:TA volume of UCLI & UCMI was

Aim

> To identify the relationship of growth between the tibialis anterior (TA) muscle and medial gastrocnemius (MG) muscle in UCP and typically developing (TD) children

Methods

> 3D-US of the MG and the TA muscle in the moreimpaired (UCMI) and the less-impaired (UCLI) of twenty children with UCP [age 6 ± 2.7 , GMFCS I=12, II=8] and the left limb in twenty TD children age 6.2 ± 2.2] Linear mixed models were used to investigate the effect of group on volume, mean EI and the ratio of MG to TA (MG:TA) volume. The age-by-group interaction was used to determine whether the rate of change in muscle volume with respect to age was different between groups.

smaller and there was a significant age-by-group interaction for UCMI but not for TD.

Table 1. Group data for muscle volume and echo-intensity

	TD Mean (SD)	USCP-LI Mean (SD)	USCP-MI Mean (SD)
MG volume (ml/kg)	1.94	1.85**	1.36*
	(0.40)	(0.42)	(0.52)
MG EI (au)	106	110**	120*
	(5.2)	(16.0)	(17.2)
TA volume (ml/kg)	2.18	2.41	2.04
	(0.60)	(0.53)	(0.73)
TA EI (au)	99	101	111
	(10.5)	(20.0)	(23.4)
MG-TA volume	0.94	0.79*	0.67*
	(0.25)	(0.16)	(0.19)

* Significantly different (p<0.05) to TD; ** Significantly different (p<0.05) to USCP-MI

Figure 2. Ratio of MG to TA muscle volume as a function of age

AUSTRALIA

Figure 1. 3D muscle representation MG, TA for all groups

References

1. Schless, S.-H., Cenni, F., Bar-On, L., Hanssen, B., Goudriaan, M., Papageorgiou, E., et al. (2019). Combining muscle morphology and neuromotor symptoms to explain abnormal gait at the ankle joint level in cerebral palsy. *Gait Posture* 68, 531-537.

2. Handsfield, G.G., Meyer, C.H., Abel, M.F., and Blemker, S.S. (2016). Heterogeneity of muscle sizes in the lower limbs of children with cerebral palsy. *Muscle Nerve* 53(6), 933-945

The ratio of MG to TA volume is preserved in early childhood in TD children but children with UCP show an age-related decline in both limbs that is driven by both slower growth of the MG, and faster growth of the TA muscle.

RESEARCH WITH IMPACT