Australian Hip Surveillance Guidelines for Children with Cerebral Palsy 2020

Australian Hip Surveillance Guidelines for Children with Cerebral Palsy 2020

Australian National Hip Surveillance Working Group 2019-20

These guidelines were updated by the National Hip Surveillance Working Group during 2019–2020. They are due for review by December 2025. Members of the National Hip Surveillance Working Group: Felicity Baker, Physiotherapist, South Australia

Heather Burnett, Paediatric Rehabilitation Medicine Physician, New South Wales

Noula Gibson, Physiotherapist, Western Australia

 ${\it Kerr}\,{\it Graham}, {\it Orthopaedic}\,{\it Surgeon}, {\it Victoria}$

Megan Kentish, Physiotherapist, Queensland

Sarah Love, Physiotherapist, Western Australia Eliza Maloney, Paediatric Rehabilitation Medicine

Physician, Tasmania

Katherine Stannage, Orthopaedic Surgeon, Western Australia

Pam Thomason, Physiotherapist, Victoria Kate Willoughby, Physiotherapist, Victoria Meredith Wynter, Physiotherapist, Queensland

This document is endorsed by:

This document can be downloaded from: www.ausacpdm.org.au/professionals/hip-surveillance

Preface

Background and development of national hip surveillance guidelines in Australia

The overarching objective of the Australian Hip Surveillance Guidelines for Children with Cerebral Palsy is to provide evidence based recommendations for the routine surveillance of hip displacement for all children with cerebral palsy (CP).

Hip displacement has been shown to have a negative association with quality of life (Jung et al., 2014; Ramstad et al., 2017). Limited hip surveillance and access to appropriate surgical intervention is associated with poorer hip morphology and subsequently higher levels of pain (Wawrzuta et al., 2016), making early identification and referral to orthopaedic assessment through hip surveillance essential to maintaining good hip health into adulthood.

The guidelines aim to provide evidence-based guidance for clinical decision making related to the commencement, frequency and cessation of hip surveillance, and to guide timely triage and referral for individual orthopaedic assessment and management. They are also a tool for the information and education of all health professionals working with children with CP and their families.

The guidelines are based on the key principles of:

- Early identification of displacement to facilitate early intervention
- Standardisation of monitoring programs
- Balancing risk and benefit: reducing radiation exposure for children in lower risk categories and
- Screening and stratification techniques based on risk factors to facilitate efficiencies of health service use

Monitoring of hip displacement for children with CP has been conducted in some states of Australia from as early as 1997, however criteria related to age of commencement, frequency of review, type of assessment and when to stop monitoring varied. The identification of a linear relationship between progressive hip displacement and the Gross Motor Function Classification System (GMFCS) has since provided a framework for the development of national hip surveillance guidelines relative to a child's risk of developing hip displacement (Soo et al., 2006).

The Consensus Statement on Hip Surveillance for Children with Cerebral Palsy: Australian Standards of Care, 2008 (Standards of Care) (Wynter, et al., 2011) was developed by a working group of five physiotherapists and an orthopaedic surgeon from tertiary facilities across three Australian states. The development was undertaken by literature review and a formal external consensus process. The *Standards of Care* did not seek to be prescriptive with respect to service model or method of delivery of hip surveillance.

At the time of development, it was recognised that ongoing, regular review of the *Standards of Care* should be undertaken to consider the impact of new evidence, and a process of 5 yearly review was established.

In 2013 a National Working Group consisting of physiotherapists and orthopaedic surgeons representing each Australian state undertook a review of the *Standards of Care* to consider the impact of new research evidence and to ensure it was user friendly. This review process comprised a systematic literature review following PRISMA guidelines, a national survey of orthopaedic surgeons working with children with CP, and analysis of data from state-based hip surveillance databases. This review informed the revised and renamed *Australian Hip Surveillance Guidelines for Children with CP: 2014* (Wynter et al., 2015).

Review of the 2014 *Guidelines* commenced in 2019 with an updated systematic review and evaluation of the guidelines using the AGREE II methodological framework for the development of clinical guidelines (AGREE Next Step Consortium, 2017). Consensus was sought from an expanded National Working Group, with the addition of representation from two paediatric rehabilitation physicians.

Recent evidence reporting a variety of barriers that parents and caregivers can experience when engaging with hip surveillance, including challenges associated with having an X-ray (Toovey et al., 2020), was considered when reviewing the frequency of hip surveillance. The Victorian Hip Surveillance Consumer Advisory Committee, comprising parents of young people with CP, was consulted regarding the proposed changes. Committee members provided positive feedback that research reporting challenges that children and parents can encounter when having a radiograph had been considered in the review. They felt it critical that changes to the *Guidelines* were primarily based on evidence related to risk of progressive hip displacement and that a balance in responding to evidence in both areas was reached. No further changes were requested or made following the consultation process.

The results of this comprehensive review process form the basis for the Australian Hip Surveillance Guidelines for Children with Cerebral Palsy: 2020.

Independent endorsement was granted by the AusACPDM for a period not exceeding five years.

Every child should be referred for hip surveillance¹ at the time CP² is identified

Population studies have identified the prevalence of hip displacement³ to be around 30%. Hip displacement³ is not related to the movement disorder but is related directly to gross motor function as determined by the Gross Motor Function Classification System (GMFCS)⁴ (Ching and Khoo, 2017; Connelly et al., 2009; Hagglund et al., 2007; Kentish et al., 2011; Soo et al., 2006; Wordie et al., 2020).

Hip dislocation³ is preventable through early identification and intervention as part of an integrated program for every child with CP². Hip surveillance¹ is the process of identifying and monitoring the early indicators of progressive hip displacement³ and is a critical part of evidenced-based care (Novak et al., 2020). Early identification is an essential part of the strategy for prevention of hip dislocation and its sequelae³ which include pain, reduced function and difficulty with caregiving. Several studies have also demonstrated that severity of hip displacement is associated with decreased quality of life, providing further evidence of the benefits of hip surveillance¹ (Jung et al., 2014; Marcström et al., 2019; Ramstad et al., 2017; Ramstad & Terjesen, 2016; Wawrzuta et al., 2016).

These Hip Surveillance Guidelines document the recommended process for screening, monitoring and triage for orthopaedic assessment as part of the overall prevention of hip dislocation³ (Hägglund et al., 2014; Hägglund et al., 2005; Kentish et al., 2011; Terjesen, 2012; Wordie et al., 2020; Wynter et al., 2015). Surgical recommendations and management guidelines do not form part of this document.

Although the risk of hip displacement³ is related directly to the GMFCS⁴ (**Figure 1**), hip surveillance¹ is required for every child with CP² regardless of gross motor function ability⁵. The **commencement** of hip surveillance¹ is dependent on corrected age⁶ and the **frequency**

of ongoing hip surveillance is determined by GMFCS⁴ level, radiological measures⁷ and clinical assessment⁸.

The prime radiological measure⁷ for hip surveillance¹ is migration percentage (MP)⁹. Change or stability¹⁰ of MP⁹ over time are more relevant than a single MP measure⁹, hence the recommendation for repeated measures at specific intervals.

Figure 1. Hip displacement (migration percentage greater than 30%) by GMFCS Level (Soo et al., 2006)

GMFCS I

- Initial clinical assessment⁸ at twenty-four months of age⁶ (or at identification if older than twenty-four months). **No** routine AP pelvic radiograph¹¹ required
- Review at three years of age
- Verify GMFCS⁴ level
- ~ If GMFCS I is confirmed¹², repeat clinical assessment⁸. AP pelvic radiograph¹¹ is **NOT** required
- ~ If GMFCS level has changed, continue surveillance according to confirmed classification¹²
- If identified as Winters, Gage and Hicks (WGH) group IV hemiplegia¹³ (Winters et al., 1987) (**Figure 2**), continue surveillance according to WGH group IV classification
- Review at five years of age
- Verify GMFCS⁴ level
- ~ If GMFCS I is confirmed¹², repeat clinical assessment⁸. AP pelvic radiograph¹¹ is **NOT** required and if no other significant signs, discharge¹⁴ from surveillance
- ~ If GMFCS level has changed, or if identified as WGH group IV hemiplegia¹³ (**Figure 2**), continue surveillance according to confirmed classification¹²

Referral for orthopaedic assessment should occur when:

- MP⁹ progresses to greater than 30%
- There is pain¹⁵ related to the hip
- Other musculoskeletal conditions¹⁶ or concerns are identified

GMFCS

GMFCS II

- Initial clinical assessment⁸ and AP pelvic radiograph¹¹ at twenty-four months of age⁶ (or at identification if older than twenty-four months)
- Review at three years of age
- Verify GMFCS⁴ level
- ~ If GMFCS II confirmed¹², repeat clinical assessment⁸. AP pelvic radiograph¹¹ is **NOT** required
- \sim If GMFCS level has changed, continue surveillance according to confirmed classification^{12}
- Review at five years of age
- Verify GMFCS⁴ level
- ~ If GMFCS level II confirmed¹², repeat clinical assessment⁸ and AP pelvic radiograph¹¹
- ~ If GMFCS level has changed, or if identified as WGH group IV hemiplegia¹³ (**Figure 2**),
- continue surveillance according to confirmed classification¹²
- If MP⁹ is abnormal¹⁷ continue twelve monthly surveillance until stability¹⁰ is established
- Review at eight to ten years of age
- Verify GMFCS⁴ level
- ~ If GMFCS II confirmed¹², repeat clinical assessment⁸ and AP pelvic radiograph¹¹

- ~ If GMFCS level has changed, or if identified as WGH group IV hemiplegia¹³ (**Figure 2**),
- continue surveillance according to confirmed classification¹²
- If MP⁹ is stable¹⁰ discharge¹⁴ from surveillance
- If MP⁹ is abnormal¹⁷ continue twelve monthly surveillance, including AP pelvic radiograph¹¹, until stability¹⁰ is established or skeletal maturity¹⁸
- In the presence of pelvic obliquity¹⁹, leg length discrepancy¹⁹ or deteriorating gait²⁰, continue twelve monthly surveillance

Referral for orthopaedic assessment should occur when:

- MP⁹ progresses to greater than 30%
- There is pain¹⁵ related to the hip
- Other musculoskeletal conditions¹⁶ or concerns are identified

GMFCS III

- Initial clinical assessment⁸ and AP pelvic radiograph¹¹ at twenty-four months of age⁶
- Review at three years of age
- Verify GMFCS⁴ level
- ~ If GMFCS III confirmed 12 , repeat clinical assessment 8 and AP pelvic radiograph 11
- \sim If GMFCS level has changed, continue surveillance according to confirmed classification^{12}
- Continue twelve monthly surveillance with clinical assessment^8 and AP pelvic radiograph^11 until skeletal maturity $^{\rm 18}$
- At skeletal maturity¹⁸, in the presence of pelvic obliquity¹⁹, leg length discrepancy¹⁹ or deteriorating gait²⁰, continue twelve monthly surveillance

Referral for orthopaedic assessment should occur when:

- MP⁹ progresses to greater than 30%
- There is pain¹⁵ related to the hip
- Other musculoskeletal conditions¹⁶ or concerns are identified

GMFCS III

GMFCS IV

- Initial clinical assessment⁸ and AP pelvic radiograph¹¹ at twelve to twenty-four months of age⁶
- Review six months later
- Verify GMFCS⁴ level
 - ~ If GMFCS IV confirmed 12 , repeat clinical assessment 8 and AP pelvic radiograph 11
- ~ If GMFCS level has changed, continue surveillance according to confirmed classification¹²
- Continue 6 monthly surveillance until MP⁹ stability¹⁰ is established
- If MP⁹ is abnormal¹⁷ continue six monthly surveillance until MP⁹ stability¹⁰ is established
- When MP^9 is stable 10 reduce frequency of surveillance to twelve monthly until skeletal maturity 18
- Independent of MP⁹, when clinical⁸ and/or radiographic evidence of scoliosis²¹ or pelvic obliquity¹⁹ is present six monthly surveillance is required until skeletal maturity¹⁸
- At skeletal maturity¹⁸, if MP⁹ is abnormal¹⁷ and progressive scoliosis²¹ or significant pelvic obliquity¹⁹ is present continue twelve monthly surveillance

Referral for orthopaedic assessment should occur when:

- MP⁹ progresses to greater than 30%
- There is pain¹⁵ related to the hip
- Other musculoskeletal conditions¹⁶ or concerns are identified

GMFCS IV

GMFCS V

- Initial clinical assessment⁸ and AP pelvic radiograph¹¹ at twelve to twenty-four months of age⁶
- Review six months later
- Verify GMFCS⁴ level
- ~ If GMFCS IV confirmed¹², repeat clinical assessment⁸ and AP pelvic radiograph¹¹
- ~ If GMFCS level has changed, continue surveillance according to confirmed classification¹²
- Continue 6 monthly surveillance until MP⁹ stability¹⁰ is established
- If MP⁹ is abnormal¹⁷ continue six monthly surveillance until MP⁹ stability¹⁰ is established
- $\,$ When MP 9 is stable 10 reduce frequency of surveillance to twelve monthly until skeletal maturity 18
- Independent of MP⁹, when clinical⁸ and/or radiographic evidence of scoliosis²¹ or pelvic obliquity¹⁹ is present, six monthly surveillance is required until skeletal maturity¹⁸
- At skeletal maturity¹⁸, if MP⁹ is abnormal¹⁷ and progressive scoliosis²¹ or significant pelvic obliquity¹⁹ is present, continue twelve monthly surveillance

Referral for orthopaedic assessment should occur when:

- MP⁹ progresses to greater than 30%
- There is pain¹⁵ related to the hip
- Other musculoskeletal conditions¹⁶ or concerns are identified

GMFCS V

Hemiplegia: Winters, Gage and Hicks IV (WGH IV¹³)

WGH group IV¹³ gait pattern (Winters et al., 1987) usually declares itself by four to five years of age.

The child with a classification of WGH group $\rm IV^{13}$ has the potential for late onset progressive hip displacement^3 regardless of GMFCS⁴ level.

- Review at five years of age
- Verify WGH gait classification¹³ and GMFCS⁴ level
- ~ If WGH group $IV^{\rm 13}$ confirmed, repeat clinical assessment^8 and AP pelvic radiograph^{\rm 11}
- ~ If not WGH group IV¹³ continue according to GMFCS classification¹³
- If MP⁹ is stable¹⁰, review at ten years of age
- If MP⁹ is abnormal¹⁷, continue twelve monthly surveillance including AP pelvic radiograph¹¹, until MP⁹ stability¹⁰ is established
- Review at ten years of age
- Verify WGH classification¹³
- ~ If WGH group IV^{13} confirmed, repeat clinical assessment^8 and AP pelvic radiograph^{11}
- ~ If not WGH group IV¹³ continue according to GMFCS classification¹²
- Continue twelve monthly surveillance until skeletal maturity¹⁸
- At skeletal maturity¹⁸ if significant scoliosis²¹, pelvic obliquity¹⁹, leg length discrepancy¹⁹ or deteriorating gait²⁰ are present, continue twelve monthly surveillance

Referral for orthopaedic assessment should occur when:

- MP⁹ progresses to greater than 30%
- There is pain¹⁵ related to the hip
- Other musculoskeletal conditions¹⁶ or concerns are identified

Key considerations for hip surveillance

Increased frequency of hip surveillance may be indicated in the presence of:

- Deterioration in function⁵ including altered gait²⁰, decreased ability or tolerance of sitting or standing
- Scoliosis²¹, pelvic obliquity¹⁹, or significant leg length discrepancy¹⁹
- Deterioration in musculoskeletal measures²² relating to the hip
- reduced range of movement, reduced muscle length, development of, or increased asymmetry²³ of range of movement
- Onset or increase in pain¹⁵ related to the hip

Referral for orthopaedic assessment should occur when:

- MP⁹ progresses to greater than 30%
- There is pain¹⁵ related to the hip
- Other musculoskeletal conditions¹⁶ or concerns are identified

These risk factors are not necessarily an indication for surgery. The intention of hip surveillance¹ is that orthopaedic assessment occurs early and at the appropriate time. Every child referred to orthopaedic assessment should be managed with an individual treatment plan²⁴ which may include ongoing hip surveillance¹.

Hip surveillance should resume following:

- The postoperative period for any child who has undergone surgery for hip displacement¹ or scoliosis²¹
- $\,$ $\,$ Neurosurgical interventions 25 such as selective dorsal rhizotomy (SDR) 25 or intrathecal baclofen (ITB) 25
- An unplanned break in surveillance for any other reason

Hip Surveillance after skeletal maturity¹⁸ and transition²⁶ into adulthood

- As part of transition²⁶ the hip should be classified according to the Melbourne Cerebral Palsy Hip Classification Scale (MCPHCS)²⁷ (Robin et al., 2009) (**Figure 8**)
- If MCPHCS grade IV or V, refer for ongoing orthopaedic assessment
- If MCPHCS grade II or III, provide advice regarding future hip health²⁸
- Referral for ongoing orthopaedic assessment should occur in the presence of pain¹⁵, progressive scoliosis²¹, significant pelvic obliquity¹⁹ and/or deteriorating function⁵ (Heidt et al., 2015; Jung et al., 2014; Oda et al., 2017; Rodby-Bousquet et al., 2013; Wawrzuta et al., 2016)

Annotations

1. Hip surveillance

Hip surveillance is the process of monitoring and identifying the critical early indicators of hip displacement³. These early indicators include GMFCS⁴ level, age⁶, gait classification (WGH group IV¹³) and MP⁹. The information gathered from the clinical assessment⁸ and radiological review¹¹ are vital components of hip surveillance and are required to capture often silent hip displacement³ while minimising radiation exposure. Hip surveillance cannot be based on clinical assessment⁸ alone.

Hip surveillance can assist identifying prognosis for the hip, inform planning for ongoing hip management, support education and assist clear communication. Surgical recommendations and management guidelines are beyond the scope of this document.

Hip surveillance is an ongoing process that continues for every child at least until skeletal maturity¹⁸ or discharge¹⁴. Hip surveillance should recommence following the post-operative period for any child who has undergone surgery for hip displacement or scoliosis²¹, following neurosurgical interventions²⁵ such as SDR or ITB, or following an unplanned break in surveillance for any other medical reason.

All children with CP² or 'like' conditions should be referred for hip surveillance even if classification of GMFCS⁴ is not yet confirmed¹².

The initial *Consensus Statement (2008)* (Wynter et al., 2011) and the *Australian Hip Surveillance Guidelines for Children with Cerebral Palsy: 2014* (Wynter et al., 2015) documented commencement and frequency of hip surveillance, where surveillance is based on risk relative to GMFCS⁴ level. Since the development and implementation of these guidelines in 2008, a number of population-based studies have demonstrated the effectiveness of hip surveillance programs at identifying progressive hip displacement in children with CP² (Hägglund et al., 2014; Hägglund et al., 2005; Kentish et al., 2011; Terjesen, 2012; Wordie et al., 2020). All studies have used radiological measures⁷ to monitor hip displacement³, with MP⁹ (Reimers, 1980) the most frequently used. The monitoring of MP⁹ enabled identification of children for surgery at a younger age, thus reducing the need for later salvage surgery³⁰ (Gordon and Simkiss, 2006; Hägglund et al., 2014; Wordie et al., 2020).

The Australian Hip Surveillance Guidelines for Children with Cerebral palsy: 2020 incorporate new evidence in this area.

2. Cerebral palsy

The term cerebral palsy (CP) refers to *cerebral palsy and like conditions*, where clinical signs or descriptions are most relevant, not aetiology (Blair and Cans, 2018). An international review of "The Definition and Classification of Cerebral Palsy" in 2006 defined CP as:

"A group of permanent disorders of the development of movement and posture, causing activity limitation, that are attributed to non-progressive disturbances that occurred in the developing foetal or infant brain. The motor disorders of cerebral palsy are often accompanied by disturbances of sensation, perception, cognition, communication, and behaviour, by epilepsy, and by secondary musculoskeletal problems." (Rosenbaum et al., 2007)

For the purposes of this document the definition of CP includes the following five key elements (Bax et al., 2005):

- 1. CP is a group of disorders, i.e. it is an umbrella term
- 2. It involves a disorder of movement and/or posture and of motor function
- 3. It is due to a non-progressive interference/lesion/abnormality
- 4. This interference/lesion/abnormality is in the developing/immature brain, and
- 5. The interference/lesion/abnormality in the developing/immature brain is permanent but the functional limitations may progress and/or change

For the purposes of these guidelines, *'like'* conditions refers to those conditions where motor dysfunction results from genetic and metabolic aetiologies, including clearly recognised syndromes, recognisable progressive brain disorders, or from brain injury acquired in childhood within the first two years of life (Blair and Cans, 2018; Smithers-Sheedy et al., 2014). In the absence of natural history data for children with post neonatally acquired brain injury, early and frequent surveillance is recommended, as clinical experience indicates a high prevalence of hip displacement in this group.

In conditions other than CP, where there is no evidence for the natural history of hip displacement³, the risk seems likely to also relate to functional ability⁵ (Kentish et al., 2011). However, generalised hypotonia and/or developmental delay without a diagnosis of CP or another recognised genetic or metabolic aetiology is **not** considered a 'like' condition. While it is recognised that there may be an increased risk for hip displacement in some individuals with these conditions, this group is clinically heterogeneous and the natural history of hip displacement³ is not well documented in the literature, therefore difficult to characterise. Children with generalised hypotonia and/or developmental delay should be assessed on an individual basis and referred for orthopaedic assessment if needed.

3. Progressive hip displacement, dislocation and sequelae

Progressive hip displacement refers to the gradual displacement of the femoral head laterally out of the acetabulum. This displacement is expressed as a migration percentage (MP)⁹.

Hip Subluxation defines the state of the hip joint and can be used interchangeably with hip displacement where MP is between 10% and 99%.

Hip Dislocation is defined when the femoral head is completely displaced laterally out of the acetabulum (MP = 100%).

The *sequelae* of progressive hip displacement are variable. Progressive displacement can result in asymmetric pressure that may deform the femoral head and/or acetabulum (also termed acetabular dysplasia). Hip dysplasia may lead to degeneration of articular cartilage and pain¹⁵ (Marcström et al., 2019; Ramstad et al., 2017; Ramstad and Terjesen, 2016; Wawrzuta et al., 2016). Problems with limited range of movement²² and pain¹⁵ can interfere with function⁵, ability to be positioned, hygiene and personal care, and may result in reduced health related quality of life (Jung et al., 2014; Ramstad et al., 2017). Progressive displacement has been shown to be a risk factor for development of dislocation of one or both hips (Cooke et al., 1989).

4. The Gross Motor Function Classification System (GMFCS)

The Gross Motor Function Classification System (GMFCS) is used to describe the gross motor function of children with CP² (Palisano et al., 1997). The GMFCS was published in 1997 and expanded and revised in 2007. When referring to GMFCS in these guidelines the authors are referring to the expanded and revised version of the GMFCS (Palisano et al., 2008).

The GMFCS classifies the gross motor function of children and youth with CP on the basis of their self-initiated movement, with particular emphasis on sitting, walking, and wheeled mobility (Palisano et al., 1997; Palisano et al., 2006; Palisano et al., 2008).

The GMFCS has five levels for describing differences in children's motor abilities. Distinctions between levels are based on functional limitations, the need for hand-held mobility devices or wheeled mobility and, to a much lesser extent, quality of movement. Since classification of motor function is dependent on age, separate descriptions are provided for several age bands within each level: before 2nd birthday, from 2nd to 4th birthday, from 4th to 6th birthday, from 6th to 12th birthday, and from 12th to 18th birthday. There is a tendency for the gross motor function of children classified prior to six years of age to be reclassified after six years of age (Palisano et al., 2006) hence the need to confirm GMFCS level at each occasion of hip surveillance¹.

The distinctions between levels I and II are not as pronounced as the distinctions between the other levels, particularly for infants less than two years of age⁶.

Emphasis is on the child's **usual** performance in home, school, and community settings, rather than what the child may be able to achieve at their best. It is therefore important to classify current performance in gross motor function and not to include judgments about the quality of movement or prognosis for improvement. Generally it takes only a few minutes to assign a GMFCS classification.

The GMFCS: Expanded and Revised (Palisano et al., 2008) and supporting resources can be downloaded free of charge from the website: https://canchild.ca/en/resources/42-gross-motor-function-classification-system-expanded-revised-gmfcs-e-r

5. Gross motor functional ability

Gross motor functional ability refers to the gross motor activities that the child is able to accomplish in his/her own environment (performance) rather than what he/she may be able to achieve in a testing situation (capability). Gross motor functional ability includes the achievement of developmental milestones.

6. Corrected age

Assessment for hip surveillance¹ takes into consideration corrected age for prematurity up to two years of age. Pre-term or premature is defined as a gestational age less than thirty six weeks. To calculate corrected age subtract the expected date of birth (i.e. not actual date of birth) from the date of evaluation.

7. Radiological measures

These are reproducible measures taken manually or electronically from a standard radiograph. For hip surveillance¹ the standard radiograph required is an antero-posterior (AP) radiograph of the pelvis¹¹ (Reimers, 1980; Scrutton et al., 2001). Radiological measures may be less accurate in the very young and will not be accurate below twelve months of age⁶.

Whilst MP⁹ is the most widely used radiological index for hip surveillance, multiple radiological criteria have been described for the assessment of the hip in children with CP². For the proximal femur, these include, but are not limited to, neck shaft angle, head shaft angle and epiphyseal tilt (Finlayson et al., 2018). On the acetabular side, the acetabular index and Sharp's acetabular angle are useful measures of acetabular dysplasia. None of these measures are independent — they are interrelated to each other and to GMFCS⁴ (Robin et al., 2008). In general, they are more useful in planning intervention and outcome studies than for hip surveillance¹.

Two tools which have been suggested to have an impact on hip surveillance are the Pelvic Adjusted Migration Percentage (PAMP) (Hägglund et al., 2018) and the CPUP risk score (Hermanson et al., 2015). The effect of pelvic obliquity¹⁹ (PO) on routine hip surveillance is minimal because the majority of younger children with CP have a level pelvis or PO less than five degrees (Hägglund et al., 2018; Heidt et al., 2015). Once PO reaches greater than ten degrees the effect on measurement of MP is more apparent (Hägglund et al., 2018; Heidt et al., 2015). There is emerging evidence that PAMP may be a better measure than traditional MP if PO is greater than ten degrees. Once PAMP has been used it should continue to be used consistently for that child. The CPUP risk score is a calculation of risk of progressive displacement for an individual child at GMFCS III-V based on age, GMFCS level, head shaft angle and MP and is a predictive clinical tool that maybe used for this group of children (Hermanson et al., 2015).

8. Clinical assessment

The essential elements of clinical assessment undertaken for hip surveillance¹ are only a part of the overall assessment required by a child with CP². For the purpose of hip surveillance, clinical assessment should include both subjective and objective aspects of assessment to identify and document concerns related to care and comfort, pain¹⁵, any change in gross motor function⁵ including deteriorating gait²⁰, and assessment of the child's spine²¹, pelvis¹⁹ and lower limb musculoskeletal system²². The assessor should be able to classify the child's gross motor function by the GMFCS⁴ and identify WGH group IV¹³ gait pattern (Winters et al., 1987).

9. Migration percentage (MP)

This is a radiographic measure⁷ of the amount of ossified femoral head that is not covered by the ossified acetabular roof (Reimers, 1980). It is the percentage of the femoral head which is lateral to the acetabular margin on an AP pelvic radiograph¹¹ (**Figure 3**).

MP is measured by drawing a horizontal line (Hilgenreiner's or H-line) through the most superior medial point of each triradiate cartilage and a vertical line (Perkin's or P-line) drawn perpendicular to it at the lateral margin of the acetabulum. The amount of the femoral head which is lateral to Perkin's line (A) is expressed as a percentage of the ossified femoral head (B) (**Figure 3**).

MP = A/B × 100%

Figure 4 shows alternative placement options for H-line which can be used when the triradiate cartilage has closed or is obscured.

When a gothic arch is present, the lateral margin of the acetabulum can be difficult to define (Miller et al., 2020). This can affect the accuracy of the standard MP measure by up to a 9% underestimation (Wek et al., 2020) and this should be considered when referring on for orthopaedic assessment. Modified MP measurement protocols have been reported when a gothic arch is present (Wek et al., 2020).

10. Stability of migration percentage

In children with CP² the majority of hips are normal at birth (Bleck, 1987; Laplaza et al., 1993; Vidal et al., 1985). In the absence of treatment, the MP⁹ increases progressively from an early age at an average rate of about 5.5% per year. A change of greater than 8% in repeated measurement by one experienced measurer is required to be 95% confident of true change (Kinch et al., 2015; Parrott et al., 2002; Shore et al., 2019). For the purpose of this document, **stable MP** is progression of not more than 10% in a twelve month period over a period of two to three years (Gordon and Simkiss, 2006).

An **unstable MP** is when the progression is greater than or equal to 10% over a twelve month period.

11. Antero-posterior (AP) pelvic radiograph

A supine AP pelvic radiograph within certain positioning limits is required to enable MP⁹ to be accurately measured. The MP is, to a large extent, dependent on the abduction or adduction of the leg, so the leg should be positioned in neutral abduction/adduction (**Figure 5A**). When an AP pelvic radiograph does not show neutral femur positioning it is not always necessary to repeat the imaging as surveillance is based on a series of radiographs over time. Unnecessary repetition adds to cumulative radiographic exposure for the child. There is limited evidence on an acceptable range of adduction/abduction. An adducted femur will increase the MP and abducted femur will decrease the MP from the true value. Consensus expert opinion in Australia accepts +/- ten degrees of hip abduction or hip adduction. The effect of rotation of the leg on MP is small.

Figure 5A. Positioning for AP pelvic radiograph

The MP⁹ can be measured only if the Hilgenriener's line can be plotted accurately, that is, the triradiate cartilages are clearly visible or there is sufficient view for alternative placement options for H-line when the triradiate cartilage has closed (**Figure 4**), and the pelvis is not in forward or backward tilt. Pelvic tilt needs to be corrected in children who have a fixed flexion deformity of the hip(s)²² or a significant lumbar lordosis (Scrutton and Baird, 1997) (**Figure 5B**).

Figure 5B. Positioning for AP pelvic radiograph: pelvic tilt

Gonadal shielding is usually not recommended for paediatric imaging of the pelvic area, either in the primary beam or close to the primary beam (within five cm). The risk and benefit of using gonadal shielding should be considered and use of a shield should be according to local practice guidelines (American Association of Physicists in Medicine, 2019; The British Institute of Radiology, 2020; Fawcett and Barter, 2009; Fawcett et al., 2012; Frantzen et al., 2012; Tsai et al., 2014).

12. Confirmed GMFCS

For the purpose of this document **confirmed** is defined as the GMFCS⁴ level which best fits on today's assessment. GMFCS levels may not always be distinct or easily apparent, particularly for the younger child and between the higher functioning levels (Hanna et al., 2009; Palisano et al., 2006). It is important to reassess for the correct GMFCS level on each occasion of hip surveillance¹.

13. Winters, Gage and Hicks classification

Winters, Gage and Hicks (WGH) classification of hemiplegic gait describes four types of gait pattern based on the sagittal plane kinematics of the ankle, knee, hip and pelvis (Winters et al., 1987). The characteristic of each group is as follows:

Group I: Foot drop in the swing phase of gait, normal dorsiflexion range in stance phase of gait

Group II: Excessive plantarflexion of the ankle in both stance and swing phase of gait

Group III: Group II deviations plus limited flexion/extension range of motion at the knee during stance and swing phases of gait

Group IV: Group III deviations plus limited flexion/extension range of motion at the hip during stance and swing phases of gait

This is represented in Figure 2.

There are limitations in using this classification as it is based only on sagittal plane kinematics (Dobson et al., 2006). Many children with hemiplegia will present with coronal and transverse plane gait deviations, such as pelvic obliquity¹⁹ and pelvic retraction that may predispose them to a higher risk of hip displacement³ than those with only sagittal plane deviations. Hence children with coronal or transverse plane abnormalities, particularly pelvic obliquity¹⁹ and/or retraction and hip internal rotation, should also be considered in group IV for the purposes of hip surveillance¹. While this classification is based on three-dimensional gait analysis kinematic data, visual observation of gait and musculoskeletal measures²² relating to the hip are sufficient for classification of WGH group IV for the purpose of hip surveillance¹. Children classified with WGH group IV gait are those at risk of progressive hip displacement³. Children with WGH group IV gait may develop displacement later than children with bilateral CP² and the hip MP⁹ can progress slowly until puberty²⁹. Children with significant asymmetrical diplegia may also follow this pattern of progression of hip displacement and clinicians should be alert to monitoring the more involved side. Children functioning at GMFCS II and presenting with very asymmetric diplegia may be considered under this classification for hip surveillance. Presentation at puberty²⁹ may be characterised by pain¹⁵, rapid increasing leg length discrepancy¹⁹, apparent leg length discrepancy¹⁹ and/or pelvic obliquity¹⁹.

14. Discharge

Discharge is the cessation of continuing hip surveillance¹. Children will most often continue to be involved with other management programs including tone management or orthopaedic gait corrective surgery³⁰ according to best practice and evidence based medicine. Gait corrective surgery³⁰ may simultaneously address displacement³ of the femoral head whilst correcting other bony alignment.

15. Pain

Pain in the hip region for children with CP² is variably reported in the literature and may or may not be associated with hip displacement or dislocation³. In some cases pain may be clinically expressed in the knee or other part of the leg but be referred from the hip. Chronic musculoskeletal pain is a complaint for up to 73% of children (Mckinnon et al., 2019; Parkinson et al., 2013; Ramstad and Terjesen, 2016; Wawrzuta et al., 2016) and up to 67% of adults with CP² (Engel et al., 2003), occurring most commonly in the low back (Penner et al., 2013), hip and leg (Engel et al., 2003; Mckinnon et al., 2019; Parkinson et al., 2013).

In adolescents with CP² who do not ambulate, pain has been reported at rest, with certain positions, or with such movements as passive abduction (Hodgkinson et al., 2001). Identifying the source of pain in the region of the hip is a challenge. In children with limited communication, the clinician must rely on the perception of the parents or caregivers to help identify the source. Pain may originate in the skin or subcutaneous tissues, the musculature surrounding the hip, the osteoarticular structures, or may be referred from another location (Spiegel and Flynn, 2006).

Pain should be measured and recorded as part of the clinical assessment²² for hip surveillance¹.

16. Other musculoskeletal conditions

Other musculoskeletal conditions include, but are not limited to, developmental dysplasia of the hip, muscle contracture that is not able to be managed conservatively, an inflammatory reaction, such as transient synovitis or sepsis, a slipped capital epiphyses, perthes disease, excessive femoral anteversion, juvenile idiopathic arthritis, septic arthritis or bursitis, osteomyelitis, other unusual bone or joint anomalies and in rare cases, bone tumours.

17. Normal/abnormal migration percentage

A normal MP⁹ is considered to be zero or even negative as displacement³ should not occur in a normal hip (Perkins, 1928). Reimers (1980) found that among children with normal motor development, the 90th centile for hip migration at four years of age was 10%. For the purpose of these guidelines, normal MP is less than 10% after the corrected age⁶ of four years (Reimers, 1980), a near normal MP is between 10–15%, and an MP of greater than 15% is considered abnormal. MP equal or greater than 30% is considered at risk (Cooperman et al., 1987; Dobson et al., 2002).

18. Skeletal maturity

There are a number of definitions of skeletal maturity utilising radiographic parameters which may be selected according to the patient population. One of the earliest is closure of the triradiate cartilage (Dimeglio, 2001) which is followed by closure of the growth plate of the olecranon apophysis at the elbow, followed by progressive capping and closure of the iliac apophysis, also known as the Risser sign (Risser, 1958) (**Figure 6**).

The closure of the triradiate cartilage (Dimeglio, 2001) can be a useful marker if the radiograph¹¹ does not include the iliac crests, and this may suffice for adolescents functioning at GMFCS I-III. However, for adolescents functioning at GMFCS IV and V the prevalence of scoliosis²¹ and pelvic obliquity¹⁹ is high and these postural variations may impede visualisation of the triradiate cartilage. It is suggested that skeletal maturity should be judged using the Risser sign which requires an AP radiograph¹¹ of the pelvis including the iliac crests.

Figure 6. The Risser sign

19. Pelvic obliquity, real and apparent leg length discrepancy

Pelvic obliquity (PO) strongly correlates with hip morphology (Heidt et al., 2015). Pelvic obliquity may occur in younger children with CP² as the result of muscle imbalances around the trunk, pelvis and hips. Pelvic obliquity may be secondary to influences above the pelvis (scoliosis²¹) or below the pelvis (leg length inequality, hip displacement/dislocation³ or asymmetric contractures of the hip adductors or hip flexors²²), or from a combination of suprapelvic and infrapelvic influences. Obliquity observed on a radiograph may be the result of challenges associated with positioning the child or them not being able to lie still. Clinically important obliquity shows up on serial AP pelvic radiographs¹¹ with a consistent pattern — the same side is always up and the opposite side is always down. Pelvic obliquity can be measured from the angle of Hilgenreiner's line to the horizontal in growing children (**Figure 7A**). In skeletally mature children there are three alternatives to Hilgenreiner's line — the inter-teardrop line, the iliac crest line or the inter-tuberosity line (**Figure 7B**). A study by Heidt et al. (2015) found the inter-teardrop line to be the most reliable.

Figure 7A. Pelvic Obliquity, pre puberty α = degree of pelvic obliquity

Figure 7B. Pelvic obliquity, post puberty

There is good evidence that PO increases hip instability on the high side of the pelvis and simultaneously increases hip stability on the low side of the pelvis (Crawford et al., 2017; Heidt et al., 2015). Once PO reaches greater than ten degrees the effect of the obliquity on hip stability, measurement of MP⁹ and long-term outcomes of hip morphology are more apparent (Hägglund et al., 2018). Consistent PO of greater than ten degrees should be considered as a trigger for referral for orthopaedic assessment of the cause of the PO.

It is important to determine the contributions of both real and apparent shortening in the evaluation of leg length discrepancy as well as the contribution of suprapelvic and infrapelvic factors. This is done by careful clinical examination²² of real and apparent leg length with interpretation of this information with radiographs of the pelvis and/or spine. Although unilateral hip displacement³ and dislocation³ may result in a real leg length discrepancy, there is frequently a combination of real and apparent discrepancy.

20. Gait

Gait describes the particular manner or way of moving on foot. It is the description of locomotion style. Alterations in gait that may necessitate increased frequency of hip surveillance¹ may include increasing asymmetry²³ of the pelvis with retraction or pelvic obliquity¹⁹, increased hip adduction²² or internal rotation²², changes or increased asymmetry²³ of step length. This is by no means inclusive of all possible gait deviations.

21. Scoliosis

In CP² most spinal deformities involve neuromuscular scoliosis, although sagittal plane deformities such as kyphosis (thoracic spine) and lordosis (lumbar spine) are also common. Spinal deformities in children with CP are related to the severity of involvement and are most common at GMFCS⁴ IV and V (Miller, 2005; Oda et al., 2017; Persson-Bunke et al., 2012; Rodby-Bousquet et al., 2013). Initially the problems are postural but tend to progress rapidly and become fixed during puberty²⁹. Clinical assessment and regular monitoring of the spine should be part of overall musculoskeletal surveillance for children with CP.

Radiographic surveillance for spinal deformity should include antero-posterior and lateral radiographs of the whole spine including the pelvis. The radiograph should be taken with the least amount of support required, i.e. independent standing for children and adolescents at GMFCS I and II, standing with usual support for those who function at GMFCS IVI, and sitting with support for those who function at GMFCS IV and V. For some children and adolescents functioning with severe fixed deformities, supine radiographs are sometimes the only feasible technique.

Associations between hip displacement³ and postural asymmetries are reported in crosssectional studies that highlight the value of hip surveillance¹ programs, however the current evidence is unable to determine causality (Oda et al., 2017; Rodby-Bousquet et al., 2013). Even after surgery for scoliosis, hip surveillance¹ should continue as risk of progressive hip displacement may not be mitigated by correction of scoliosis (Crawford et al., 2017; Oda et al., 2017). Specific recommendations for timing and frequency of spinal surveillance is beyond the scope of this document.

22. Musculoskeletal measures relating to the hip

Musculoskeletal measures relating to the hip should include assessment of the spine²¹, pelvis¹⁹, leg length discrepancy¹⁹ and physical examination of the lower limbs including passive and dynamic range of movement muscle strength, and measures of tone/spasticity (Boyd and Graham, 1999). There is no strong evidence for a relationship between these measures and hip MP⁹ but we recommend that they are assessed as part of hip surveillance¹ to think about these factors in clinical decision making and until strong evidence emerges that they are not related.

Assessment of musculoskeletal measures around the hip, function and pain¹⁵ may include:

- Passive range of movement
- Hip abduction with hips at 90 degrees of flexion
- Hip abduction with hips at 0 degrees of flexion
- Thomas test
- Hip flexion
- Hip extension (Staheli)
- Hip internal rotation
- Hip external rotation
- Femoral neck anteversion (FNA)
- Popliteal angle
- Pelvic obliquity¹⁹
- Real and apparent leg length
- Functional mobility categorised by the Functional Mobility Scale (FMS) (Graham et al., 2004)
- Assessment of pain¹⁵ about the hip
- Assessment of tone, which may include:
- Dynamic contracture as measured by Modified Tardieu Scale (Boyd and Graham, 1999)
- ~ Hip adductors
- ~ Hamstrings
- Australian Spasticity Assessment Scale (Love et al., 2016)
- ~ Hip adductors
- ~ Hamstrings
- \sim Hip flexors
- Hypertonia Assessment Tool (Marsico et al., 2017) to identify presence of hypertonia in the lower limbs
- Barry Albright Dystonia Scale (Barry et al., 1999) to quantify dystonia in lower limbs

23. Fixed posture and asymmetry

Fixed posture describes structural changes to the posture/mobility of the trunk and/or limbs that cannot be voluntarily or passively corrected. This can be assessed clinically and radiologically and is differentiated from non-structural postural changes which may be fully corrected.

Asymmetry is dissimilarity in corresponding parts on opposite sides of the body which are normally alike.

Fixed asymmetry describes structural changes to the trunk, pelvis and/or limbs, and is characterised by the lack or absence of symmetry which cannot be voluntarily or passively corrected. This can be assessed clinically and radiologically and is differentiated from non-structural postural changes which may be fully corrected.

Newly developed is a clinical sign or measure of recent onset which was not apparent at the previous clinical assessment or radiograph, or is subjectively described by the patient/caregiver as having recently appeared.

24. Individual treatment plan

An individual treatment plan is the adaptation of a standard management plan in response to individual clinical presentation and need. This management plan may include ongoing surveillance¹, altered frequency of surveillance and/or intervention including surgical intervention³⁰.

25. Neurosurgical interventions

Neurosurgical interventions include those directed at the central nervous system to modulate movement disorders.

Selective dorsal rhizotomy (SDR) is a neurosurgical procedure used in children with CP² to reduce spasticity in the lower limb by surgically interrupting the afferent input of the monosynaptic stretch reflex. The procedure involves dividing the dorsal root into separate rootlets and transecting a portion of these, leaving the others intact, thereby preserving sensory function and minimising sphincter dysfunction (Grunt et al., 2014).

Continuous intrathecal Baclofen infusion (ITB) involves the administration of Baclofen directly to the cerebrospinal fluid, by way of a surgically implanted pump with a catheter directed into the intrathecal space. The continuous administration of Baclofen acts directly at the level of the spinal cord to reduce abnormal posturing.

Referral back to hip surveillance¹ should occur following neurosurgical interventions.

26. Transition

Transition is defined as "the purposeful planned movement of adolescents and young adults with chronic physical and medical conditions from child-centred to adult-oriented health care systems" (Blum, 1995).

Transition from hip surveillance¹ will occur at the point of discharge¹⁴ from surveillance or at the conclusion of paediatric services. Young people with CP² with a risk related to future pain¹⁵ or progressive hip displacement³ require advice, information, and at times referral to adult services to ensure optimal hip health²⁸ in the future. Summary documentation provided at transition should include details of orthopaedic interventions³⁰ that have been undertaken for the hip/s.

Classification of the hips according the Melbourne Cerebral Palsy Hip Classification Scale (MCPHCS)²⁷ at skeletal maturity¹⁸ is required to identify hips at risk of pain¹⁵ associated with arthritic changes, future progressive displacement or dislocation³ (Wawrzuta et al., 2016) Young people functioning at GMFCS II or III and/or WGH group IV¹³ presenting with MCPHCS grade 3 or 4 hip/s may benefit from counselling on the possibility of future interventions for optimising hip health²⁸. A MCPHCS grade 4 or 5 hip/s in young people with progressive scoliosis²¹ and/or pelvic obliquity¹⁹ requires continuation of surveillance as hip dislocation³ remains an ongoing risk in this population (Wawrzuta et al., 2016).

27. The Melbourne Cerebral Palsy Hip Classification Scale (MCPHCS)

The Melbourne Cerebral Palsy Hip Classification Scale (MCPHCS) (Robin et al., 2009) which has been expanded and revised (Burns et al., 2014) (**Figure 8**) is an ordinal grading system, which was designed to describe hip morphology at skeletal maturity¹⁸ for young people with CP² across all GMFCS⁴ levels. The classification covers a wide range of radiographic features from grade 1 (normal hip), through to grade 6 (dislocated hip). The MCPHCS includes subclassifications of femoral head deformity, acetabular deformity and pelvic obliquity¹⁹. For detail of the sub-classifications refer to the published papers (Robin et al., 2009, Burns et al., 2014). grade 7 denotes that the hip joint has been lost to some form of salvage surgery³⁰. The utilisation of MP⁹ in the MCPHCS ensures backwards compatibility with data from hip surveillance¹ in childhood. It is recommended as a simple way of classifying the outcomes of hip development, hip surveillance¹ and management in children with CP at skeletal maturity¹⁸ (Wawrzuta et al., 2016). The MCPHCS is valid (based on the MP⁹) and has been shown to be reliable (Murnaghan et al., 2010; Shrader et al., 2017). **Figure 8.** Melbourne Cerebral palsy Hip Classification Scale (Expanded and Revised) (Robin et al., 2009; Burns et al., 2014)

Grade 1: Normal hip — migration percentage <10%

- **1.** Shenton's arch intact
- 2. Femoral head round (within 2mm using Mose circles)
- **3.** Acetabulum normal acetabular development with a normal horizontal sourcil, an everted lateral margin and normal tear drop development
- **4.** Pelvic obliquity <5°
- 5. No degenerative change, no pain

Grade 2: Near normal hip — migration percentage ≥10% ≤15%

- **1.** Shenton's arch intact
- **2.** Femoral head round or almost round
- **3.** Acetabulum normal or near normal development
- **4.** Pelvic obliquity <5°
- **5.** Low risk of degenerative change, usually pain free

Grade 3: Dysplastic hip migration percentage >15% ≤30%

- **1.** Shenton's arch intact or broken by ≤ 5 mm
- 2. Femoral head round or mildly flattened
- **3.** Acetabulum normal or mildly dysplastic including blunting of the acetabular margin and a widened tear drop
- of the acetabular margin and a widehed tear
- **4.** Pelvic obliquity <10°
- 5. Low risk of degenerative change, occasionally mild pain

Grade 4: Dysplasia with mild subluxation — migration percentage >30% <60%

- 1. Shenton's arch broken by >5mm
- 2. Femoral head some flattening
- 3. Acetabulum dysplastic
- 4. Pelvic obliquity variable
- **5.** Risk of degenerative change, pain variable

Grade 5: Moderate to severe subluxation — migration percentage ≥60% <100%

- 1. Shenton's arch broken by >10mm
- 2. Femoral head variable deformity
- **3.** Acetabulum variable deformity
- 4. Pelvic obliquity variable
- 5. Degenerative change frequent, pain frequent

Grade 6: Dislocated hip — migration percentage ≥100%

- 1. Shenton's arch completely disrupted
- 2. Femoral head variable deformity
- **3.** Acetabulum variable deformity
- **4.** Pelvic obliquity variable
- **5.** Degenerative change frequent, pain frequent

Grade 7: Salvage surgery

- 1. Valgus osteotomy
- 2. Arthrodesis
- **3.** Excision arthroplasty (Castle) +/- valgus osteotomy (McHale)
- **4.** Replacement arthroplasty
- 5. Pain relief following salvage surgery, variable

28. Hip health

The hip should be a flexible, pain-free joint that does not limit function⁵. The femoral head should be well covered by the acetabulum.

29. Puberty

Puberty can be recognised by a combination of growth acceleration, development of secondary sexual characteristics, chronological age and bone age. Bone age can be assessed with a range of radiological investigations of which radiograph of the wrist or elbow are the most widely used. In typically developing children, girls will experience the onset of puberty at eleven years (bone age) and boys at thirteen years (bone age) but there is wide variation in both typically developing children and even more so in children with CP². In typically developing children, about 50% have a bone age that is significantly different from their chronological age and in CP the percentage is even higher (Dimeglio, 2001). Delayed bone age is particularly common in children function at GMFCS⁴ IV and V and it is probable that the pattern of skeletal maturation varies by GMFCS level. Although hip displacement³ may occur in children with CP from early childhood, the pubertal growth spurt is a period of particular risk for both progression of existing hip displacement, the development of hip displacement in previously stable¹⁰ hips, as well as the development of pelvic obliquity¹⁹ and scoliosis²¹.

30. Orthopaedic interventions

Orthopaedic surgical interventions can include gait corrective surgery, soft tissue, reconstructive and salvage procedures. Discussion of surgical recommendations and management guidelines are beyond the scope of this document.

Reference list

Disclaimer

These guidelines are based on review of the current medical literature and current knowledge of the natural history of CP and data from established hip surveillance programs in Australia.

These guidelines are based on careful and considered analysis of expert opinion and the evidence to date. There may well be a range of unknown factors yet to be determined in hip surveillance for children with CP. Clinical judgement can and should override these guidelines when clinical or carer concerns are noted, and appropriate action should be taken. AGREE Next Steps Consortium. (2017) The AGREE II instrument [Electronic version]. Retrieved , from http://www.agreetrust.org. January 6, 2020.

American Association of Physicists in Medicine. AAPM position statement on the use of patient gonadal and fetal shielding (2019) https://www.aapm. org/org/policies/details.asp?id=468&type=PP Accessed 02/04/2020

Barry, M. J., VanSwearingen, J. M. & Albright, A. L. (1999). Reliability and responsiveness of the Barry-Albright dystonia scale. *Dev Med Child Neurol*, 41(6), 404–411.

Bax, M., Goldstein, M., Rosenbaum, P., Leviton, A., Paneth, N., Dan, B., Jacobsson, B. & Damiano, D. Executive Committee for the Definition of Cerebral Palsy. (2005) Proposed definition and classification of cerebral palsy. *Dev Med Child Neurol*, 47(8):571-576.

Blair, E. & Cans, C. (2018). The definition of cerebral palsy. In cerebral palsy, a multidisiplinary approach: 13-17. *Panteliadis, C. editor Springer International Pub.*

Bleck, E. (1987). Total body involved-hip and spine. Orthopaedic management in cerebral palsy. *Clinics Dev Med*, *99*(100), *392–480*.

Blum, R. W. (1995). Transition to adult health care: setting the stage. *J Adolescent Health*, *17(1)*, *3–5*.

Boyd, R. N. & Graham, H. K. (1999). Objective measurement of clinical findings in the use of botulinum toxin type A for the management of children with cerebral palsy. *Eur J Neurol, 6, s23-s35.*

Burns, F., Stewart, R., Reddihough, D., Scheinberg, A., Ooi, K. & Graham, HK. (2014) The cerebral palsy transition clinic: administrative chore, clinical responsibility, or opportunity for audit and clinical research? J Child Orthop, 8:203-213. The British Institute of Radiology. Guidance on using shielding on patients for diagnostic radiology applications (2020).https://www.bir.org.uk/ media/414334/final_patient_shielding_guidance.pdf. Accessed 02/04/2020

Ching, B.-H. & Khoo, T.-B. (2017). Prevalence and predictive factors of hip displacement in children with cerebral palsy at Paediatric Institute, Kuala Lumpur Hospital. *Neurol Asia, 22(3)*.

Connelly, A., Flett, P., Graham, H. K. & Oates, J. (2009). Hip surveillance in Tasmanian children with cerebral palsy. J Paediatr Child Health, 45(7-8), 437-443.

Cooke, P., Cole, W. & Carey, R. (1989). Dislocation of the hip in cerebral palsy. Natural history and predictability. *J Bone Joint Surg Br*, 71(3), 441–446.

Cooperman, D. R., Bartucci, E., Dietrick, E. & Millar, E. A. (1987). Hip dislocation in spastic cerebral palsy: long-term consequences. *J Ped Ortho*, 7(3), 268-276.

Crawford, L., Herrera-Soto, J., Ruder, J. A., Phillips, J. & Knapp, R. (2017). The fate of the neuromuscular hip after spinal fusion. *J Ped Ortho*, *37(6)*, 403–408.

Dimeglio, A. (2001). Growth in pediatric orthopaedics. J Ped Ortho, 21(4), 549–555.

Dobson, F., Boyd, R., Parrott, J., Nattrass, G. & Graham, H. (2002). Hip surveillance in children with cerebral palsy: impact on the surgical management of spastic hip disease. *J Bone Joint Surg Br*, 84(5), 720–726.

Dobson, F., Morris, M. E., Baker, R., Wolfe, R. & Graham, H. K. (2006). Clinician agreement on gait pattern ratings in children with spastic hemiplegia. *Dev Med Child Neurol*, 48(6), 429-435. Engel, J. M., Jensen, M. P., Hoffman, A. J. & Kartin, D. (2003). Pain in persons with cerebral palsy: extension and cross validation. *Arch Phys Med Rehab*, 84(8), 1125–1128.

Fawcett S. L. & Barter S. J. (2009). The use of gonad shielding in paediatric hip and pelvis radiographs. Br J Radiol, 82(977), 363–370.

Fawcett S. L., Gomez A. C., Barter S. J., Ditchfield M. & Set P. (2012). More harm than good? The anatomy of misguided shielding of the ovaries. *Br J Radiol*, 85(1016), e442-447.

Finlayson, L., Czuba, T., Gaston, M., Hägglund, G., & Robb, J. (2018). The head shaft angle is associated with hip displacement in children at GMFCS levels III-V—a population based study. BMC Musculoskelet Di, 19(1), 1-4.

Frantzen, M. J., Robben, S., Postma, A. A., Zoetelief, J., Wildberger, J. E. & Kemerink, G. J. (2012). Gonad shielding in paediatric pelvic radiography: disadvantages prevail over benefit. *Insights Imaging*, 3(1), 23-32.

Gordon, G. & Simkiss, D. (2006). A systematic review of the evidence for hip surveillance in children with cerebral palsy. *J Bone Joint Surg Br*, 88(11), 1492–1496.

Graham, H. K., Harvey, A., Rodda, J., Nattrass, G. R. & Pirpiris, M. (2004). The Functional Mobility Scale (FMS). *J Pediatr Orthop*, *24*(5), *514–520*.

Grunt, S., Fieggen, A. G., Vermeulen, R. J., Becher, J. G. & Langerak, N. G. (2014). Selection criteria for selective dorsal rhizotomy in children with spastic cerebral palsy: a systematic review of the literature. *Dev Med Child Neurol*, *56*(4), *302–312*. Hägglund, G., Alriksson-Schmidt, A., Lauge-Pedersen, H., Rodby-Bousquet, E., Wagner, P. & Westbom, L. (2014). Prevention of dislocation of the hip in children with cerebral palsy: 20-year results of a population-based prevention programme. Bone Jt. J., 96(11), 1546-1552.

Hägglund, G., Andersson, S., Düppe, H., Lauge-Pedersen, H., Nordmark, E. & Westbom, L. (2005). Prevention of dislocation of the hip in children with cerebral palsy. The first ten years of a population based prevention programme. *J Bone Joint Surg Br*, 87(1), 95-101.

Hägglund, G., Goldring, M., Hermanson, M. & Rodby-Bousquet, E. (2018). Pelvic obliquity and measurement of hip displacement in children with cerebral palsy. *Acta Orthop*, 89(6), 652-655.

Hägglund, G., Lauge-Pedersen, H. & Wagner, P. (2007). Characteristics of children with hip displacement in cerebral palsy. *BMC Musculoskelet Di*, *8*, 101.

Hanna, S. E., Rosenbaum, P. L., Bartlett, D., Palisano, R. J., Walter, S. D., Avery, L. & Russell, D. J. (2009). Stability and decline in gross motor function among children and youth with cerebral palsy aged 2 to 21 years. *Dev Med Child Neurol*, *51*(4), *295–302*.

Heidt, C., Hollander, K., Wawrzuta, J., Molesworth, C., Willoughby, K., Thomason, P., Khot, A. & Graham, H. (2015). The radiological assessment of pelvic obliquity in cerebral palsy and the impact on hip development. *Bone Jt. J.*, 97(10), 1435-1440.

Hermanson, M., Hägglund, G., Riad, J., Rodby-Bousquet, E. & Wagner, P. (2015). Prediction of hip displacement in children with cerebral palsy: development of the CPUP hip score. *Bone Jt J*, *97*(10), 1441-1444. Hodgkinson, I., Jindrich, M., Duhaut, P., Vadot, J., Metton, G. & Berard, C. (2001). Hip pain in 234 non ambulant adolescents and young adults with cerebral palsy: a cross sectional multicentre study. *Dev Med Child Neurol*, 43(12), 806–808.

Jung, N. H., Pereira, B., Nehring, I., Brix, O., Bernius, P., Schroeder, S. A., Kluger, G. J., Koehler, T., Beyerlein, A. & Weir, S. (2014). Does hip displacement influence health-related quality of life in children with cerebral palsy? *Dev Neurorehab*, 17(6), 420–425.

Kentish, M., Wynter, M., Snape, N. & Boyd, R. (2011). Five-year outcome of state-wide hip surveillance of children and adolescents with cerebral palsy. J Pediatr Rehabil Med, 4(3), 205–217.

Kinch, K., Campbell, D. M., Maclean, J. G., Read, H. S., Barker, S. L., Robb, J. E. & Gaston, M. S. (2015). How critical is patient positioning in radiographic assessment of the hip in cerebral palsy when measuring migration percentage? *J Ped Ortho*, 35(7), 756-761.

Laplaza, F., Root, L., Tassanawipas, A. & Glasser, D. (1993). Femoral torsion and neck-shaft angles in cerebral palsy. *J Ped Ortho*, *13*(2), *192-199*.

Love, S., Gibson, N., Smith, N., Bear, N., Blair, E. & Group, A. C. P. R. (2016). Interobserver reliability of the Australian spasticity assessment scale (ASAS). Dev Med Child Neurol, 58, 18–24.

Marcström, A., Hägglund, G. & Alriksson-Schmidt, A. I. (2019). Hip pain in children with cerebral palsy: a population-based registry study of risk factors. *BMC Musculoskelet Di*, 20(1), 62.

Marsico, P., Frontzek-Weps, V., Balzer, J. & van Hedel, H. J. (2017). Hypertonia assessment tool: reliability and validity in children with neuromotor disorders. J Child Neurol, 32(1), 132-138. Mckinnon, C. T., Meehan, E. M., Harvey, A. R., Antolovich, G. C. & Morgan, P. E. (2019). Prevalence and characteristics of pain in children and young adults with cerebral palsy: a systematic review. *Dev Med Child Neurol*, 61(3), 305–314.

Miller, F. (2005). Spine. In cerebral palsy, 433–522. Springer Science & business Media Inc.

Miller, S., Habib, E., Bone, J., Schaeffer, E., Yang, B., Shea, J., Maleki, A., Shore, B. & Mulpuri, K. (2020) Inter-rater and intrarater reliabilities of the identification of a "gothic arch" in the acetabulum of children with cerebral palsy. *J Pediatr Ortho doi:* 10.1097/BP0.00000000001615.

Murnaghan, M., Simpson, P., Robin, J., Shore, B., Selber, P. & Graham, H. K. (2010). The cerebral palsy hip classification is reliable: an inter- and intraobserver reliability study. *J Bone Joint Surg Br*, 92(3), 436-441.

Novak, I., Morgan, C., Fahey, M., Finch-Edmondson, M., Galea, C., Hines, A., Langdon, K., Mc Namara, M., Paton, M. C. & Popat, H. (2020). State of the evidence traffic lights 2019: systematic review of interventions for preventing and treating children with cerebral palsy. *Current Neuro Neurosci, 20(2), 1–21*.

Oda, Y., Takigawa, T., Sugimoto, Y., Tanaka, M., Akazawa, H. & Ozaki, T. (2017). Scoliosis in patients with severe cerebral palsy: three different courses in adolescents. *Acta Medica Okayama*, 71(2), 119–126.

Palisano, R., Rosenbaum, P., Walter, S., Russell, D., Wood, E. & Galuppi, B. (1997). Development and reliability of a system to classify gross motor function in children with cerebral palsy. *Dev Med Child Neurol*, 39(4), 214-223.

Palisano, R. J., Cameron, D., Rosenbaum, P. L., Walter, S. D. & Russell, D. (2006). Stability of the gross motor function classification system. *Dev Med Child Neurol*, 48(6), 424-428. Palisano, R. J., Rosenbaum, P., Bartlett, D. & Livingston, M. H. (2008). Content validity of the expanded and revised Gross Motor Function Classification System. *Dev Med Child Neurol*, 50(10), 744-750.

Parkinson, K. N., Dickinson, H. O., Arnaud, C., Lyons, A. & Colver, A. (2013). Pain in young people aged 13 to 17 years with cerebral palsy: cross-sectional, multicentre European study. *Arch Dis Child*, 98(6), 434-440.

Parrott, J., Boyd, R. N., Dobson, F., Lancaster, A., Love, S., Oates, J., Wolfe, R., Nattrass, G. R. & Graham, H. K. (2002). Hip displacement in spastic cerebral palsy: repeatability of radiologic measurement. J Ped Ortho, 22(5), 660–667.

Penner, M., Xie, W. Y., Binepal, N., Switzer, L. & Fehlings, D. (2013). Characteristics of pain in children and youth with cerebral palsy. *Pediatrics*, 132(2), e407-e413.

Perkins, G. (1928). Signs by which to diagnose congenital dislocation of the hip. *The Lancet, 211(5457),* 648–650.

Persson-Bunke, M., Hägglund, G., Lauge-Pedersen, H., Wagner, P. & Westbom, L. (2012). Scoliosis in a total population of children with cerebral palsy. *Spine*, *37*(12), *E708–E713*.

Ramstad, K., Jahnsen, R. B. & Terjesen, T. (2017). Severe hip displacement reduces health-related quality of life in children with cerebral palsy: a population-based study of 67 children. *Acta Orthop*, 88(2), 205-210.

Ramstad, K. & Terjesen, T. (2016). Hip pain is more frequent in severe hip displacement: a population-based study of 77 children with cerebral palsy. *J Ped Ortho B*, 25(3), 217-221.

Reimers, J. (1980). The stability of the hip in children. A radiological study of the results of muscle surgery in cerebral palsy. *Acta Orthop Scand Suppl, 184, 1.*

Risser, J. C. (1958). The iliac apophysis: an invaluable sign in the management of scoliosis. *Clin Orthop Relat R*, *11*, *111–119*.

Robin, J., Graham, H. K., Baker, R., Selber, P., Simpson, P., Symons, S. & Thomason, P. (2009). A classification system for hip disease in cerebral palsy. *Dev Med Child Neurol*, *51*(3), 183-192.

Robin, J., Graham, H. K., Selber, P., Dobson, F., Smith, K. & Baker, R. (2008). Proximal femoral geometry in cerebral palsy: A population-based cross-sectional study. *J Bone Joint Surg Br*, 90–*B*(10), 1372–1379.

Rodby-Bousquet, E., Czuba, T., Hägglund, G. & Westbom, L. (2013). Postural asymmetries in young adults with cerebral palsy. *Dev Med Child Neurol*, 55(11), 1009–1015.

Rosenbaum, P., Paneth, N., Leviton, A., Goldstein, M., Bax, M., Damiano, D., Dan, B. & Jacobsson, B. (2007). A report: the definition and classification of cerebral palsy April 2006. *Dev Med Child Neurol Suppl*, 109(suppl 109), 8-14.

Scrutton, D. & Baird, G. (1997). Surveillance measures of the hips of children with bilateral cerebral palsy. *Arch Dis Child*, *76*(4), 381-384.

Scrutton, D., Baird, G. & Smeeton, N. (2001). Hip dysplasia in bilateral cerebral palsy: incidence and natural history in children aged 18 months to 5 years. Dev Med Child Neurol, 43(9), 586-600.

Shore, B. J., Martinkevich, P., Riazi, M., Baird, E., Encisa, C., Willoughby, K. & Narayanan, U. G. (2019). Reliability of radiographic assessments of the hip in cerebral palsy. *J Ped Ortho*, 39(7), e536–e541. Shrader, M., Koenig, A., Falk, M., Belthur, M. & Boan, C. (2017). An independent assessment of reliability of the melbourne cerebral palsy hip classification system. *J Children's Orthop*, 11(5), 334-338.

Smithers-Sheedy, H., Badawi, N., Blair, E., Cans, C., Himmelmann, K., Krägeloh-Mann, I., McIntyre, S., Slee, J., Uldall, P. & Watson, L. (2014). What constitutes cerebral palsy in the twenty-first century? Dev Med Child Neurol. Apr, 323–328.

Soo, B., Howard, J. J., Boyd, R. N., Reid, S. M., Lanigan, A., Wolfe, R., Reddihough, D. & Graham, H. K. (2006). Hip displacement in cerebral palsy. J Bone Joint Surg Am, 88(1), 121-129.

Spiegel, D. A. & Flynn, J. M. (2006). Evaluation and treatment of hip dysplasia in cerebral palsy. *Orthop Clin, 37(2), 185–196.*

Terjesen, T. (2012). The natural history of hip development in cerebral palsy. *Dev Med Child Neurol, 54*(10), *951-957*.

Toovey, R., Willoughby, K. L., Hodgson, J. M., Graham, H. K. & Reddihough, D. S. (2020). More than an x-ray: Experiences and perspectives of parents of children with cerebral palsy when engaging in hip surveillance. J Paediatr Child Health, 56(1), 130–135.

Tsai, Y. S., Liu, Y. S., Chuang, M. T., Wang, C. K., Lai, C. S., Tsai, H. M., Lin, C. J. & Lu, C. H. (2014). Shielding during x-ray examination of pediatric female patients with developmental dysplasia of the hip. J Radiol Prot, 34(4), 801-809

Vidal, J., Deguillaume, P. & Vidal, M. (1985). The anatomy of the dysplastic hip in cerebral palsy related to prognosis and treatment. *Int Orthop*, 9(2), 105-110.

Wawrzuta, J., Willoughby, K. L., Molesworth, C., Ang, S. G., Shore, B. J., Thomason, P. & Graham, H. K. (2016). Hip health at skeletal maturity: a population-based study of young adults with cerebral palsy. *Dev Med Child Neurol*, 58(12), 1273-1280.

Wek, C., Chowdhury, P., Smith, C. & Kokkinakis, M. (2020) Is the gothic arch a reliable radiographic landmark for migration percentage in children with cerebral palsy? *J Child Orthop*, *14*. *DOI:* 10.1302/1863-2548.14.200008.

Winters, T., Gage, J. & Hicks, R. (1987). Gait patterns in spastic hemiplegia in children and young adults. *J Bone Joint Surg Am*, 69(3), 437-441.

Wordie, S. J., Robb, J. E., Hägglund, G., Bugler, K. E. & Gaston, M. S. (2020). Hip displacement and dislocation in a total population of children with cerebral palsy in Scotland: status after five years' hip surveillance. *Bone Jt. J., 102(3), 383–387.*

Wynter, M., Gibson, N., Kentish, M., Love, S., Thomason, P. & Kerr Graham, H. (2011). The consensus statement on hip surveillance for children with cerebral palsy: Australian standards of care. J Pediatr Rehabil Med, 4(3), 183-195.

Wynter, M., Gibson, N., Willoughby, K. L., Love, S., Kentish, M., Thomason, P., Graham, H. K. & Group, N. H. S. W. (2015). Australian hip surveillance guidelines for children with cerebral palsy: 5-year review. *Dev Med Child Neurol*, *57*(9), 808–820.

Government of Western Australia Child and Adolescent Health Service

These hip surveillance guidelines for children with cerebral palsy were endorsed by the Australasian Academy of Cerebral Palsy and Developmental Medicine (AusACPDM) in November 2020. Endorsement by AusACPDM is granted for a period not exceeding five years, at which date the approval expires. The AusACPDM expects that these guidelines will be reviewed no less than once every five years.

These Australian Hip Surveillance Guidelines are due for review by December 2025.